
I.E.D. Laura Vicuña
Area : Matemáticas
Lic. William Gutiérrez Fonseca
Lic. Johana Silva
La esencia de las matemáticas no es hacer las cosas simples complicadas, sino hacer las cosas complicadas simples
-S. Gudder

VISITANTES
Operaciones Con Números Racionales
1.- Suma y resta de números racionales
Para suma y resta de números racionales se realiza el mismo procedimiento que ya has estudiado en cursos anteriores para las fracciones y números decimales.
Para sumar o restar números decimales infinitos periódicos o semiperiódicos debes transformarlos a fracción para poder sumarlos con otro número racional.
1.1- Adición y sustracción de fracciones con igual denominador
Para sumar fracciones con igual denominador, se conserva el denominador y se suman los numeradores. Siendo a, b, c diferentes a 0, lo podemos representar de la siguiente forma;
Ejemplos:
1.2- Adición y sustracción de fracciones con distinto denominador
Para sumar fracciones con distinto denominador, se igualan los denominadores de las fracciones, buscando el mínimo común múltiplo entre los denominadores y amplificando cada fracción por el número que corresponda. Luego, se realiza la adición o sustracción de la misma forma que en el caso anterior (igual denominador).
En el caso que sean 2 fracciones, siendo a, b, c, d diferentes a 0, lo podemos representar de la siguiente forma;
Ejemplos:
2.- Multiplicación de números racionales
Se multiplican sus numeradores y sus denominadores.
4/6 x 7/3 = (4 x 7)/(6 x 3) = 28/18
3.- División de números racionales:
Se multiplica el numerador de la primera por el denominador de la segunda, y el denominador de la primera por el numerador de la segunda.
5/3 : 7/4 = (5 x 4)/(3 x 7) = 20/21
Ejemplo 1:
Martha tiene un negocio en el cual vende huevos empacados por docena. Uno de sus clientes le pide solamente 5/6 de docena, ¿cuántos huevos debe venderle Martha?
Debido a que una docena son doce unidades, y se requiere calcular 5/6 de la misma, se deben multiplicar los números 5/6 y 12 . Para realizar esta multiplicación, primero se debe por un uno como denominador del número entero 12. Luego se procede a multiplicar numerador por numerador y denominador por denominador. En la siguiente imagen puedes ver el proceso completo:
Por lo tanto 5/6 de 12 unidades son 10. Así, Martha sabrá que debe venderle a su cliente 10 huevos.
Este procedimiento también se puede usar para determinar a cuánto equivale una fracción de una fracción, observa:
Ejemplo 2:
En una fiesta se comparte un pastel y al final solo quedan 2/5 del mismo. Si Andrés se come 1/4 de lo que queda, ¿que fracción del total se comió?
Ayuda Didáctica




Compromiso Escolar
